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Abstract—An adaptive and scalable alternative to the finite element and finite volume methods is developed to solve the steady
multi-dimensional radiative transport equation. Solutions to the problem of heat transfer within a two-dimensional box through a
non–scattering medium are presented and compared to the results from popular finite volume methods. The accuracy level of the
developed method, using skewed piecewise linear bases, surpasses that of the finite volume results using the popular step and
diamond schemes on a regular grid. Moreover, the accuracy levels are achieved with less than 1 % of the number of control volumes
used by the finite volume methods.  2001 Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

A numerator in coefficient equation
B linear boundary operator
B denominator in coefficient equation
Cδ positive constant
ck
d

kth coefficient in the SFA method for a
discrete ordinate

D number of ordinate directions
G incident radiation
g forcing function
H Hilbert space
h grid spacing
I intensity of radiation numerical vector
I intensity of radiation
Ib black body intensity of radiation (Planck

function)
L linear differential operator
L distance between parallel plates
N number of bases
np number of basis parameters
p polynomial order of basis function
Q vector of optimization constraints
q heat flux scalar
R equation residual vector

∗ Correspondence and reprints.
E-mail address: meade@rice.edu (A.J. Meade).

r position vector
Sn angular quadrature scheme
T temperature (K)
wd quadrature weight for a discrete ordinate
x spatial coordinate
y spatial coordinate
〈·, ·〉 inner product

Greek symbols

β extinction coefficient
δ Kronecker delta
ε emissivity of a surface
εr solution error/small positive number
η local coordinate of basis function in the x

direction
θx angle between the η and x axes
θy angle between the ξ and y axes
Λ objective function
ξ local coordinate of basis function in the y

direction
σ Stefan–Boltzmann constant

= 5.67·10−8 . . . . . . . . . . . . . . W·m−2 ·K−4

φ weighting function
ψ basis function
Ω solid angle . . . . . . . . . . . . . . . . rad
Ωdn direction cosine to the hypothetical

surface normal vector
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Subscripts

B belonging to the boundary
B belonging to the boundary equation
d dummy index/associated with a discrete

ordinate
i dummy index
j dummy index
L belonging to the differential equation
L basis parameter
l dummy index
lin belonging to the piecewise linear basis
M basis parameter
n dummy index
p dummy index
R basis parameter
skewed belonging to the piecewise linear skewed

basis
x x direction
y y direction

Superscripts

j dummy index
k dummy index
m order of a Hilbert space norm
s order of a Hilbert space norm
γ order of convergence defined in

equation (1)
ζ dimension of the problem domain˜ approximation

1. INTRODUCTION

The resulting integro-differential equation makes so-
lution techniques to radiation heat transfer problems fun-
damentally different from those of conduction and con-
vection. The speedy, accurate, and computationally ef-
ficient solution of the radiative transfer equation (RTE)
is of considerable importance in engineering in order to
solve multidimensional problems. Howell [1] suggested
that parallel Monte Carlo techniques [2] should be effi-
cient in solving the integro-differential equation for any
number of processors since interprocessor communica-
tion is not needed between individual “games”. Novo
et al. [3] attempted to parallelize the radiative trans-
port equation through an angular decomposition method
known as the discrete ordinate method (DOM) [4, 5].
In the DOM, integrals over the solid angular domain
in the RTE are approximated by a quadrature rule over
discrete directions, where an appropriate quadrature set
is chosen [6] based on the scattering function used.
Novo et al. noticed that the angular domain is read-
ily parallelized with high efficiencies, as verified by

Haferman et al. [7], since each direction may be cal-
culated independently for a given radiative source. Us-
ing the finite element method (FEM) on the discrete or-
dinate form of the RTE (DOM/RTE), Burns [8] intro-
duced a parallel sparse iterative solver in the spatial do-
main.

An additional difficulty in the DOM/RTE presents
itself in multiple dimensions and that is the possible
presence of non-physical discontinuities in the DOM
formulation, commonly known as “ray effects” [9]. Three
techniques have proven successful in the literature in
reducing the ray effect. The first and most common
technique is simply to increase the number of ordinate
directions. This has the effect of increasing the actual
number of discontinuities while reducing the respective
magnitudes of each. The second technique is the use of
alternative quadrature sets for certain types of problem.
The third technique is to use the numerical method itself
to smooth the non-physical artifacts of the DOM by
the use of “false scattering”, as described by Chai et
al. [9]. An additional, or fourth, approach not found in
the literature is the use of a user-defined or physically
consistent smoothing technique similar to the use of
artifical viscosity and entropy in computational fluid
dynamics [10].

There are problems associated with each of the four
techniques. The first technique merely increases the
problem size and defeats the purpose of the DOM and
the numerical method. The second technique is problem
specific and may not be useful for general problems.
In the third technique, the numerical smoothing is a
result of an inaccurate solution of the DOM/RTE. It
is, therefore, grid dependent and so may be difficult
to reproduce. A slight change in a course grid will
affect the solution profile noticeably, and an increasingly
finer grid will produce an accurate and discontinuous
solution. The physically consistent formulation of the
fourth technique is not yet available, and the user-
defined technique may be problem specific. However,
the user-defined artificial scattering would at least be
reproducible.

In the present work, an optimal solution algorithm is
developed based on sequential function approximation
(SFA) for the multi-dimensional DOM/RTE without the
“ray effects”. It is a user-friendly, solution-adaptive, and
matrix-free automatic “meshless” solver algorithm that
we also believe has the potential to utilize parallelism in
the spatial domain. Results for heat transfer within a two-
dimensional black box through non-scattering media are
given and compared with popular finite volume method
(FVM) schemes on a regular grid.
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Solution of the radiative transfer equation

2. SOLUTION PROCEDURE

In this section we will outline the FVM approach and
the adaptive approximation of differential equations. This
is followed by a discussion of the SFA method which
will be used to approximate the solution to the RTE,
optimization methods, and the local basis functions to be
used in the approximations.

2.1. Finite volume solutions of RTE by
DOM

In a typical application of the finite volume method
to the DOM, the problem domain is divided into a mesh
of regular control volumes (CVs) corresponding to the
boundaries of the domain and oriented with respect to
the chosen coordinate system.

The two most popular FVM schemes applied to the
DOM/RTE are the diamond and step. In the diamond
scheme the cell center value can be chosen as a sim-
ple average. This choice however, can result in oscilla-
tory solutions throughout the domain and nearly always
includes overshoots and undershoots near the location
of a discontinuity. Also, the oscillations decrease with
an increasingly fine mesh but they do not vanish. The
scheme does, however, capture the locations of discon-
tinuities with fewer grid points than its alternative, the
step scheme.

The step scheme is effective in removing the os-
cillations generated by the discontinuities. In addition,
the discontinuity, which is a non-physical artifact of the
DOM, is removed as well through the addition of false
scattering. In fact, many consider the step scheme to pro-
duce better solutions than the diamond scheme since the
actual physical solution does not possess discontinuities.
Because the solution is basically incorrect it is also very
grid sensitive. As the grid grows finer the solution ex-
hibits the expected DOM generated discontinuities.

These deficiencies suggest that neither of these FVM
schemes is completely satisfactory with current DOM an-
gular discretizations. We offer the sequential function ap-
proximation method as an alternative. The SFA method to
be used in this work is based on a variety of techniques
borrowed from various subdisciplines in computational
mechanics. First developed in artificial neural networks
research, the SFA method has been employed for iter-
ative function approximation. Motivated by similarities
observed in adaptive grid optimization techniques in the
solution of partial differential equations (PDEs), Meade
et al. [11] reformulated the SFA method with the help

of the closely related method of weighted residuals. To
begin our discussion on the SFA method, we must first
outline adaptive grid optimization.

2.2. Adaptive grid optimization

The purpose of all adaptive grid techniques is to
generate an optimal node distribution based on some
objective. The common characteristic of these techniques
is that a grid is generated and a solution found. Diaz
et al. [12] classified their optimal node distribution as a
relocation technique, or r method, including it among the
well-known h, p, and h–p adaptive methods. Using error
analysis from finite elements [13], we can write

‖εr‖Hm ≤ Cδh
γ ‖Id‖Hs ≈ CδN

−γ /ζ ‖Id‖Hs and

γ = min(p + 1 −m,s −m) (1)

In h methods the quality of the solution is improved
by reducing the grid spacing h with the introduction of
additional basis functions. In p methods, the polynomial
order of the basis functions, p, is increased, while h–p
methods combine the introduction of additional basis
functions with an increase in the order of existing and/or
introduced bases. In the r method, the locations of the
grid nodes, i.e., the locations of the basis functions, are
adjusted to increase the accuracy and consequently to
decrease the value of the constant Cδ .

It is well known that most of the computational time
required by codes that utilize adaptive techniques is spent
on the required grid generation [14]. Reference [15]
stated that the major challenges to adaptive methods in
computational mechanics include:

1. The use of unstructured meshes and their resulting
elaborate and complicated data structures.

2. The necessity of explicit or iterative solution tech-
niques due to the poor performance of direct solvers on
dynamically evolving unstructured meshes.

3. Stability issues of the associated numerical sche-
mes stemming from the continuous changes in the data
structures and polynomial order of the bases.

4. The computational overhead of the error estimation
and the adaptation process.

The SFA method presented in this paper features the
advantages of adaptive methods without sharing their
disadvantages.
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2.3. Application of the proposed SFA
method

In the SFA method, as an alternative to the conven-
tional FVM and FE approaches, an incremental set of in-
terpolation functions is built sequentially by an optimiza-
tion method to improve the expansion-based approxima-
tion. The function at any step k is approximated as [11]

Ĩ kd (r)= Ĩ k−1
d (r)+ ckdψ

k
d (r) (2)

Therefore, the only difference between the kth approxi-
mation and the (k − 1)th approximation is a single new
basis, unlike a FVM approximation where upgrading to
the kth approximation may involve finding a total of
k new bases. For the SFA method, the coefficients cjd and

interpolation functionsψj
d (r), j = 1, . . . , k−1, that form

Ĩ k−1
d (r) are held fixed while the coefficient ckd and inter-

polation function ψk
d (r) are computed optimally accord-

ing to some appropriate criterion, such as the minimiza-
tion of an objective function Λ. Depending on the basis
functions used, SFA should have access to popular adap-
tive grid methods.

There are no restrictions on the distribution of these
bases and a broad class of basis functions can be used
(e.g., low-order polynomials, B-splines, and radial basis
functions). Since bases added later will change the
computational mesh as needed, an h–r-type adaptive
grid is created effectively, matrix-free, without the need
for a posteriori error estimation and the associated
remeshing. In addition, bases can be concentrated near
high gradients or any other desired areas, provided the
basis is chosen using that objective.

The dimensionality of the non-linear optimization
problem is kept low by solving for only one basis (or
at most a few bases) at a time. The weighted residual
method is applied to define well-posed problems, and nu-
merical stability issues are limited to the non-linear opti-
mization process. Multiple processors may be devoted to
finding the kth basis by using parallelizable optimization
codes such as parallel direct search (PDS) [16]. Alterna-
tively, an efficient sequential optimization method can be
used with parallel evaluation of multiple bases (e.g., kth,
(k + 1)th and (k + 2)th). Also, the algorithm can be ini-
tialized with either an empty set or an arbitrary number
of predetermined functions and coefficients. The second
option enables the use of solutions from a previous nu-
merical analysis.

2.4. Formulation of the objective
function

Each individual PDE of the DOM radiation problem
can be written as

L
[
Id(r), r

]= gL
[
I(r), Id (r), r

]
subject to the boundary conditions

B
[
Id(rB), rB

]= gB
[
I(rB), Id (rB), rB

]
The equation residual in each PDE and boundary con-
dition may be determined after every stage of the SFA
algorithm. Thus, after k SFA stages the residuals are

Rk
L(r)=


gL
(

Ĩk, Ĩ k1 , r
)−L

(
Ĩ k1 , r

)
...

gL
(

Ĩk, Ĩ kD, r
)−L

(
Ĩ kD, r

)
 (3)

and

Rk
B(rB)=


gB
(

Ĩk, Ĩ k1 , rB
)−B

(
Ĩ1

k, rB
)

...

gB
(

Ĩk, Ĩ kD, rB)−B
(
Ĩ kD, rB

)
 (4)

The equation residuals of equations (3) and (4) are
minimized by a fully coupled formulation without the
need for an explicit source function, since all of the
ordinate directions proceed simultaneously toward the
correct solution with each additional SFA basis.

Using a geometric interpretation of the method of
weighted residuals, the optimum basis for a given direc-
tion at the kth SFA stage can be determined from [11]

min(Λ)= min

(
−
[

D∑
l=1

〈
φkil, φ

k
il

〉]−1 D∑
j=1

〈
Rk−1
j , φkij

〉2)
i = 1, . . . ,D (5)

where, for notational convenience, the previous formu-
lation was made with the assumption that the Dirich-
let boundary conditions were satisfied. The boundary
operator terms, therefore, are not shown, and the sub-
script L has been dropped from the vector of equation (3).
The inclusion of boundary operators is straightforward.
The coefficients are calculated from the Petrov–Galerkin
method,

D∑
j

〈
Rk
j , φ

k
ij

〉= 0i , i = 1, . . . ,D (6)

where the weighting function φkij ≡ δijL(ψk
i ) is used.
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Solution of the radiative transfer equation

Since equation (5) uses the (k−1)th equation residual
vector, the calculation of the weighting functions φkij (and

thus, ψk
i ) for a given direction is independent of the

other ordinate directions. As a result, each component
of equation (5) can be minimized independently and in
parallel.

With the application of equation (6) to the radiative
transfer equation the optimization problem can be written
for each direction d as

min(Λ)= min

(
−A2

d

Bd

)
, d = 1, . . . ,D (7)

where, neglecting the parameters of the RTE for the sake
of clarity,

Ad ≡
k−1∑
j=1

[
D∑

p=1

c
j
p

(〈∇ψk
d,ψ

j
p

〉+ 〈
ψk
d ,ψ

j
p

〉)
− c

j
d

(〈∇ψk
d,∇ψ

j
d

〉+ 〈∇ψk
d,ψ

j
d

〉
+ 〈

ψk
d ,∇ψ

j

d

〉+ 〈
ψk
d ,ψ

j

d

〉)]

and Bd ≡ 〈∇ψk
d,∇ψk

d〉 + 2〈∇ψk
d,ψ

k
d 〉 + 〈ψk

d ,ψ
k
d 〉, d =

1, . . . ,D.

2.5. Boundary conditions

The optimization variables are the np parameters of
the chosen basis ψk

d . The constraints on these parameters
(Q), which the optimization routine must satisfy, depend
on the form of the basis, the optimization method, and
the original boundary conditions. In general, these con-
straints can be classified as the lower and upper bounds
required to keep the basis finite for finite valued parame-
ters and one constraint per dimension to satisfy the origi-
nal boundary operator in the propagation direction.

The constraints for the lower and upper bounds may
be unnecessary if the basis is well behaved. The latter
type of constraint may be unnecessary if the boundary
operator is incorporated into the objective function or if
the basis automatically satisfies the boundary operator
due to convenient parameter bounds.

2.6. Optimization methods

For speed and accuracy on a scalar computer a gra-
dient-based optimization algorithm is needed. The gra-
dient in basis parameter space of the objective function

described in equation (7) is found as

∇Λ= −2
Ad

Bd

∇Ad +
(
Ad

Bd

)2

∇Bd

and Ad , Bd , and Λ are all continuous in the parame-
ter space. However, if piecewise continuous bases are
chosen, ∇Ad and ∇Bd , and therefore ∇Λ, will be dis-
continuous. This necessitates a non-smooth optimization
routine. To date two such routines, SolvOpt [17] and
FFSQP [18], have been used successfully by the authors.
Of these two, SolvOpt showed better performance for our
test cases and was used to generate the results presented
in this text.

2.7. Basis functions

The choice of the proper form of the bases plays a
major role in the efficiency of the algorithm as a whole
and its utility. We chose local bases since the algorithm
will have much greater utility applied to irregular prob-
lem domains. Arguably the most popular local basis is
the piecewise linear B1 spline (“hat function”), defined
as

ψlin(x)≡


η+ xL

xL
−xL ≤ η ≤ 0

η− xR

−xR
0 < η ≤ xR

0 otherwise
with local coordinate η is defined as

η(x)≡ x − xM

The constraints required for ψlin(x) are

Qlin =


xL − εr
xM

xR − εr
1 − xM{

xM − xL Ωd > 0
1 − xM − xR Ωd < 0

≥ 0

so np = 3.

Multi-dimensional bases can be formed from tensor
products of the B1, or ψlin(x, y)≡ψlin(x)ψlin(y). Bases
aligned with the x and y directions are limited in
their ability to model discontinuities along an arbitrary
direction with the SFA method. If one imagines the
discontinuity as a boundary, then it is well known in
finite elements that boundaries are better matched with
elements that are properly aligned (e.g., unstructured
grids) than with those that are not (e.g., structured grids).
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Figure 1. Bilinear sequential function approximation of discontinuity: (a) 1 basis, discontinuity aligned with coordinates; (b) 20 bases,
discontinuity not aligned with coordinates.

Figure 1 illustrates that using the SFA method, an aligned
boundary can be approximated with a single aligned
basis. However, even after a large number of aligned
bases are added with the SFA algorithm, a simple skewed
boundary cannot be approximated.

In order to overcome this problem a skewed bilinear
basis was developed that can have its local axes aligned in
arbitrary directions. The form of the basis can be written
as

ψskewed(x, y)=ψlin(η)ψlin(ξ)

where η and ξ are basis local coordinates defined such
that

x = xM + η cos θx − ξ sin θy and

y = yM + η sin θx + ξ cosθy

The skewed bases are centered at (xM, yM) as are
the non-skewed variety. The constraints required for
ψskewed(x, y) are

Qskewed =
Qlin(x)

Qlin(y)

θx
θy

≥ 0

so np = 8. Note that we can recover the aligned bilinear
basis when θx = θy = 0. Figure 2 illustrates that the

SFA algorithm can now accurately approximate both an
aligned and a non-aligned discontinuity using only a
single skewed basis function.

Unfortunately, with skewed bases, inner products of
the form 〈ψi(x, y),ψj (x, y)〉 cannot be evaluated as
〈ψi(x),ψj (x)〉 · 〈ψk(y),ψl(y)〉 since local basis coor-
dinates η and ξ are no longer orthogonal. This concern
can be addressed by breaking the bases down into quad-
rants. Since x and y are linear functions of η and ξ , each
basis is in effect a quadratic function of x and y . Thus, the
product of two basis (within a quadrant) is a fourth-order
polynomial of x and y (at most). The resultant quadrants
may then be decomposed into discrete two-dimensional
triangular elements, over which standard six-point Gauss
quadrature rules may be used to integrate fourth-order
polynomials exactly.

3. RESULTS

The two-dimensional problem investigated consists of
radiative heat transfer between four sides of an L×L

square black box as shown in figure 3 filled with an
isotropically scattering medium. The medium is at radia-
tive equilibrium and has an extinction coefficient of β .
Isothermal conditions were maintained on all surfaces.
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Figure 2. Skewed bilinear sequential function approximation of discontinuity: (a) 1 basis, discontinuity aligned with coordinates;
(b) 1 basis, discontinuity not aligned with coordinates.

Figure 3. Radiation in a square black box.

The resulting dimensionless intensity leaving the three
cold walls was Ib = 0 with Ib = 1 at the remaining wall;
all four surfaces are black (ε = 1).

Following the procedure outlined in Section 2, the
two-dimensional DOM/RTE was solved by the SFA
method using the SolvOpt optimization algorithm com-
bined with the skewed bilinear bases. The SolvOpt op-

timization package (version 1.1 with default parameters
and constraint tolerance set to zero) was used for the opti-
cally thin and thick S2 and the optically medium S6 cases
shown in figures 4–11. The boundary conditions of the
physical problem were satisfied by initial bases. Subse-
quent bases were constrained so that their values were
zero at the boundaries. Ordinate directions were selected
and subsequent bases were placed randomly along each
of the ordinates with their local axes initially aligned with
the global x and y (i.e., initialization of the optimization
variables). These bases then altered location, width, and
orientation, with respect to the global axes, to minimize
the equation residual without user intervention. The inci-
dent radiation and heat flux scalar were computed from

G

4π
=

D∑
d=1

wdId and
q

π
=

D∑
d=1

wdΩdnId

respectively. SFA results were compared to FVM solu-
tions using the diamond and step schemes on a regular
grid. All calculations were made on a SUN Ultra 1 using
a 143 MHz floating point processor. As figures 4–11 indi-
cate, the SFA algorithm provides more accurate solutions
with far fewer bases than the CVs used in the conven-
tional FVMs.
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Figure 4. DOM solutions for incident radiation G along the
centerline (x = 0.5, L= 1), thin medium: S2, β = 0.1.

Figure 5. DOM solutions for incident radiation G along the
centerline (x = 0.5, L= 1), thick medium: S2, β = 3.0.

Figure 6. Solution of centerline temperature by SFA, FVM
diamond, and FVM step schemes: S6, β = 1.0, L= 1.

One of the more interesting results of the multi-
dimensional SFA algorithm is the ability to minimize the
effect of artificial scattering so that discontinuities are

Figure 7. Grid dependent FVM step scheme solution of center-
line temperature: S6, β = 1.0, L= 1.

Figure 8. Non-dimensional heat flux along hot wall: S6, β = 1.0,
L= 1.

matched without smearing or oscillations, as illustrated
in figures 4–6. The SFA algorithm does so with fewer
than 1 % of the number of FVM control volumes.

As mentioned in Section 1, solutions enhanced by ar-
tificial scattering such as those of the FVM step scheme
have questionable validity. To illustrate this, a grid depen-
dent centerline temperature profile is given in figure 7. In-
creasing the number of CVs leads to a less smooth solu-
tion as the artificial scattering is reduced and the discon-
tinuities are better approximated. From these results it is
seen that the standard practice of choosing a grid density
that will give results that best match a published solution
can be misleading.

The artificial scattering in FVM solutions also affects
the heat flux calculations. Figure 8 compares the sym-
metric heat flux along one half of the bottom wall from
the SFA, FVM diamond, and FVM step scheme using
the DOM/RTE to a finite element solution [19] of the
full RTE. It is noted that near the corners of the box the
FVM solutions diverge dramatically from the expected
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Figure 9. Non-dimensional temperature, FVM step scheme: S6,
β = 1.0, 40 000 control volumes, L= 1.

Figure 10. Non-dimensional temperature, FVM diamond
scheme: S6, β = 1.0, 40 000 control volumes, L= 1.

heat flux profiles. To overcome this problem, the heat
flux is typically not reported near the corner (e.g., re-
sults shown by Modest [20] and Ramankutty and Cros-
bie [21]) or the solution is extrapolated to the corner by

Figure 11. Non-dimensional temperature, SFA method: S6,
β = 1.0, 21 bases, L= 1.

some other means. The SFA solution, however, gives con-
sistently smooth heat flux predictions along the entire hot
wall without oscillations or extrapolation.

To further illustrate the SFA method’s stability and re-
duction of artificial scattering, the non-dimensional tem-
perature distributions are shown for the problem domain
in figures 9–11. The contours show high (bottom of do-
main) to low (top of domain) values of non-dimensional
temperature. Figure 9 shows how the FVM step scheme
smears the discontinuities through false scattering and
also smooths the solution between the discontinuities. In
figure 10 we see that the FVM diamond scheme mod-
els the discontinuities fairly well, as evidenced by the
presence of discrete rays in the approximation. But we
also notice that the discontinuities are still smeared, al-
beit slightly, by the artificial scattering. More impor-
tantly the non-dimensional temperature, which should
vary smoothly between these rays, is oscillatory.

The non-dimensional temperature distribution calcu-
lated by the SFA method is illustrated in figure 11. Here
the discontinuities are crisp and distinct throughout the
domain. Also, the non-dimensional temperature distri-
bution between the discontinuities is smooth. The an-
gles of these rays correspond precisely to the discrete
ordinate directions chosen. Note that while the FVM
scheme requires 40 000 CVs, the SFA result requires only
21 skewed bilinear bases. In other words, the number of
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Figure 12. Convergence history: S6, β = 1.0, L= 1.

bases that the SFA method requires is only 0.05 % of the
number CVs used in the FVM.

Using the convergence rate (RMS versus N1/ζ ) to
measure the performance of the SFA algorithm, we note
that with the RMS of the equation residual,

RMS ≤ ‖εr‖H 1

Figure 12 for S6 and β = 1.0 displays the significant per-
formance benefits the SFA method provides compared to
the conventional FVM. Because the B1 spline and FVM
control volume are piecewise linear and the solution is
linear, then p = 1, m = 1, and s = 1 in equation (1).
Therefore, using a non-linear optimization routine, the
B1 spline and control volume should approach an op-
timal convergence rate of γ = 1 with increasing N1/ζ .
The initial quadratic (or higher) convergence for the S6
and β = 1.0 case of figure 12 is caused by the reloca-
tion component of the SFA [22] since it places the bases
where they will reduce the equation residual the greatest.
This is most effective with the first few bases. The con-
vergence rate should approach the theoretical optimum
predicted by error analysis for B1 splines as N increases
further. This is evident in figure 12 for N > 4. This con-
vergence study proves that the SFA method does not ad-
versely affect the optimal convergence rate of B1 splines.
As a result, we judge the application of SFA to the two-
dimensional DOM/RTE with skewed bilinear bases to be
successful.

4. CONCLUSIONS

The SFA method [22] may prove to be an attrac-
tive adaptive and scalable alternative to the FE and

FVM approaches in the efficient solution of the multi-
dimensional DOM/RTE. The developed algorithm is a
user-friendly, solution-adaptive, and matrix-free auto-
matic meshless solver. SFA solutions to the problem of
heat transfer within a two-dimensional box through a
non-scattering medium have been presented and com-
pared to the results from a conventional DOM/FVM. The
accuracy level of the SFA results using skewed local
bases clearly surpasses the FVM results using the pop-
ular step and diamond schemes on a regular grid. More
importantly, the SFA accuracy levels are achieved with
far fewer low-order bases. In its worst case, the required
SFA bases are fewer than 1 % of the number of CVs used
by the FVM schemes and in its best case only 0.05 %.
From a numerical analysis perspective, one of the SFA
method’s attractive features is that its convergence rate
is no less than, and can initially exceed, the theoretical
optimum for the piecewise linear bases.
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